Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Enhancement of Physical and Mechanical Attributes of a Natural Fiber-Reinforced Composite for Engineering Applications

2024-04-09
2024-01-2237
A natural fiber based polymer composite has the advantage of being more environment-friendly from a life cycle standpoint when compared to composites reinforced with widely-used synthetic fibers. The former category of composites also poses reduced health risks during handling, formulation and usage. In the current study, jute polymer laminates are studied, with the polymeric resin being a general purpose polyester applied layer-by-layer on bi-directionally woven jute plies. Fabrication of flat laminates following the hand layup method combined with compression molding yields a jute polymer composite of higher initial stiffness and tensile strength, compared to commonly used plastics, coupled with consistency for engineering design applications. However, the weight-saving potential of a lightweight material such as the current jute-polyester composite can be further enhanced through improvement of its behavior under mechanical loading.
Technical Paper

The Influence of Sample Geometry on the Mechanical Properties and Failure Mechanisms of 6111 Aluminum Alloy Tensile Specimens

2024-04-09
2024-01-2280
This research focuses on the commercial 6111 aluminum alloy as the subject of investigation. By designing tensile specimens with the same characteristic dimensions but varying fillet radii, the effects of fillet radius on the tensile properties and stress concentration effects of the aluminum alloy were studied through tensile testing and digital image correlation techniques. The results demonstrate that with an increase in fillet radius, the failure strength and stress distribution of the aluminum alloy specimens have both undergone alterations. This phenomenon can be attributed to the reduction of stress concentration at the fillet due to the larger fillet radius. Further verification through digital image correlation reaffirms that samples with a fillet radius of 10mm exhibit notable stress concentration effects at the fillet, while specimens with a fillet radius increased to 40mm display uniform plastic deformation across the parallel section.
Technical Paper

Simulation of Self-Piercing Riveting Process in Aluminum Alloy 5754 Using Smoothed Particle Galerkin Method

2024-04-09
2024-01-2069
Self-piercing riveting (SPR) are one of most important joining approaches in lightweight vehicle design for Body-in-white (BIW) manufacturing. Numerical simulation of the riveting process could significantly boost design efficiency by reducing trial-and-error experiments. The traditional Finite Element Method (FEM) with element erosion is hard to capture the large plastic deformation and complex failure behaviors in the SPR process. The smoothed Particle Galerkin Method (SPG) is a genuine meshless method based on Galerkin's weak form, which uses a novel bond-based failure mechanism to keep the conservation of mass and momentum during the material failure process. This study utilizes a combined FEM and SPG approach to join Aluminum sheet 5754 using a full three-dimensional (3D) model in LS-DYNA/explicit.
Technical Paper

Lightweight Design of Integrated Hub and Spoke for Formula Student Racing Car

2024-04-09
2024-01-2080
In the racing world, speed is everything, and the Formula Student cars are no different. As one of the key means to improve the speed of the car, lightweight plays an important role in the racing world. The weight reduction of unsprung metal parts can not only improve the driving speed, but also effectively optimize the dynamic of the car, so the lightweight design of unsprung parts has attracted much attention. In the traditional Formula Student racing car, the hub and spoke are two independent parts, they are fixed by four hub bolts or a central locking nut, the material of these fasteners is usually steel, so it brings a lot of weight burden. In order to achieve unsprung lightweight, a new type of wheel part design of Formula Student racing car is proposed in this paper. The hub and spoke are designed as integrated aluminum alloy parts, effectively eliminating the mass of hub bolts or central locking nuts.
Technical Paper

Study of the Connection between E-Machine and Gearbox of a Hybrid Powertrain

2024-04-09
2024-01-2592
As part of the development of its new powertrain consisting of two electric motors, a combustion engine and a gearbox, Renault SAS followed an original approach to achieve an assembly with an optimized, robust, and reliable link between the main electric motor and the gearbox. The running operation optimization as well as the high reliability is achieved by processing the following topics: filtration of vibrations and operating jolts; solving of tribological problems specific to splined connections, such as fretting corrosion and abrasive tooth wear; avoidance of potential seizure of elements with cyclic relative slippage under load; and eventually, control of wear and tear on the sealing and damping O-rings, which must accept oscillating translational movements at the same time as torque transfer. The aim of this article is to retrace the main steps taken to achieve the desired reliability and performance targets for this type of product.
Technical Paper

A Study on the Correlation between Heat-Treatment Microstructure and Mechanical Properties of Additive Manufactured Al-Si-Mg Alloy with Bulk and Lattice Structure for Weight Reduction of Vehicle Parts and Application of Shock Absorbing Regions

2024-04-09
2024-01-2574
This study delves into the microstructural and mechanical characteristics of AlSi10Mg alloy produced through the Laser Powder Bed Fusion (L-PBF) method. The investigation identified optimal process parameters for AlSi10Mg alloy based on Volume Energy Density (VED). Manufacturing conditions in the L-PBF process involve factors like laser power, scan speed, hatching distance, and layer thickness. Generally, high laser power may lead to spattering, while low laser power can result in lack-of-fusion areas. Similarly, high scan speeds may cause lack-of-fusion, and low scan speeds can induce spattering. Ensuring the quality of specimens and parts necessitates optimizing these process parameters. To address the low elongation properties in the as-built condition, heat treatment was employed. The initial microstructure of AlSi10Mg alloy in its as-built state comprises a cell structure with α-Al cell walls and eutectic Si.
Technical Paper

Additive Manufacturing in Powertrain Development – From Prototyping to Dedicated Production Design

2024-04-09
2024-01-2578
Upcoming, increasingly stringent greenhouse gas (GHG) as well as emission limits demand for powertrain electrification throughout all vehicle applications. Increasing complexity of electrified powertrain architectures require an overall system approach combining modular component technology with integration and industrialization requirements when heading for further significant efficiency optimization. At the same time focus on reduced development time, product cost and minimized additional investment demand reuse of current production, machining, and assembly facilities as far as possible. Up to date additive manufacturing (AM) is an established prototype component, as well as tooling technology in the powertrain development process, accelerating procurement time and cost, as well as allowing to validate a significantly increased number of variants. The production applications of optimized, dedicated AM-based component design however are still limited.
Technical Paper

The Influence of Fundamental Processing Parameters of Ultrasonic Shot Peening on Surface Characteristics of 7B50-T7751 Alloy

2024-04-09
2024-01-2681
Aluminum alloy has become an indispensable part of the automotive industry because of its excellent mechanical properties such as lightweight, high strength, high reliability, maintainability, and low cost. Aluminum alloy is used in automobiles, such as engine blocks, cylinder heads, intake manifolds, brake components, and fuel tanks. Fatigue and fracture are the main reasons for its engineering failure. Surface strengthening techniques, such as ultrasonic shot peening (USP), are often used to improve the fatigue resistance of aluminum alloys. This article expounds on the working principle of USP and elucidates the influence of USP process parameters on the surface characteristics of aluminum alloy. Experimental results observed the effects of USP parameters on surface properties such as surface roughness, microhardness, and surface morphology.
Technical Paper

Structural Validation and Correlation of Inverter Gasket

2024-04-09
2024-01-2744
Inverter is the power electronics component that drives the electrical motor of the electrical driven compressor (EDC) and communicates with the car network. The main function of the inverter is to convert the direct current (DC) voltage of the car battery into alternating current (AC) voltage, which is used to drive the three-phase electric motor. In recent days, inverters are present in all automotive products due to electrification. Inverter contains a printed circuit board (PCB) and electronic components, which are mounted inside a mechanical housing and enclosed by a protective cover. The performance of the electrical drive depends upon the functioning of the inverter. There is a strong demand from the customer to withstand the harsh environmental and testing conditions during its lifetime such as leakage, dust, vibration, thermal tests etc.
Technical Paper

Comparison of Bake Hardening Effects on AHSSs and Extruded Aluminum Alloys Applied in BEV Reinforcement Structures

2024-04-09
2024-01-2240
At the dawn of battery electric vehicles (BEVs), protection of automotive battery systems as well as passengers, especially from severe side impact, has become one of the latest and most challenging topics in the BEV crashworthiness designs. Accordingly, two material-selection concepts are being justified by the automotive industry: either heavy-gauge extruded aluminum alloys or light-gauge advanced high-strength steels (AHSSs) shall be the optimal materials to fabricate the reinforcement structures to satisfy both the safety and lightweight requirements. In the meantime, such a justification also motivated an ongoing C-STARTM (Cliffs Steel Tube as Reinforcement) Protection project, in which a series of modularized steel tube assemblies, were demonstrated to be more cost-efficient, sustainable, design-flexible, and manufacturable than the equivalent extruded aluminum alloy beams as BEV reinforcement structures.
X